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The relaxation of a reattached turbulent boundary layer downstream of a wall fence 
has been investigated. The boundary layer has an adverse pressure gradient imposed 
upon it which is adjusted in an attempt to  bring the boundary layer into equilibrium. 
This is done by adjusting the pressure gradient so as to bring the Clauser parameter 
(G)  down to a value of about 11.4 and then maintain it constant. I n  the region from 
the reattachment point to  2 or 3 reattachment lengths downstream, the boundary 
layer recovers from the initial major effects of reattachment. Farther downstream 
(where G is constant) the pressure-gradient parameter changes very slowly and 
profiles of non-dimensionalized eddy viscosity appear self-similar. However, pressure 
gradient and eddy viscosity are both roughly twice as large as expected on the basis 
of previous studies of equilibrium turbulent boundary layers. It is not known 
whether equilibrium has been achieved in this downstream region. This is another 
illustration of the great sensitivity of boundary-layer structure to perturbations. 

1. Introduction 
This is a study of two-dimensional turbulent boundary layers relaxing downstream 

of separation and reattachment in cases where the shear layer a t  reattachment is 
much thicker then the boundary layer upstream of separation. The relaxation of the 
boundary layer downstream of reattachment is a slow process which cannot be 
predicted accurately using current turbulence models. Depending on the surface 
geometry and the nature of the device that produces the separation, a streamwise 
distance of more than 100 times the shear-layer thickness a t  reattachment may be 
required before the boundary layer regains an equilibrium structure. Boundary 
layers downstream of reattachment are of practical importance, for example 
downstream of a shock-induced separation on a supercritical aerofoil, or downstream 
of a step or discontinuity on a flow surface. Previous experimental investigations of 
the relaxation of a reattached boundary layers have only considered relaxation in a 
zero pressure gradient, but in many cases of practical importance relaxation occurs 
in an adverse pressure gradient. I n  fact the behaviour of boundary layers is most 
critical in those flow devices for which the pressure gradient is adverse, for example 
diffusers and aerofoils, since their limiting performance is determined by boundary- 
layer growth and separation. 

Flow separation and reattachment has been reviewed recently by Simpson (1985), 
and Bradshaw & Wong (1972) contains a review of reattachment and relaxation 
downstream of a variety of surface discontinuities, including fences and backsteps. 
We know of no previous studies of the effect of adverse pressure gradient on the 
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relaxation of the boundary layer downstream of reattachment, although Driver & 
Seegmiller (1985) have studied reattachment in diverging channel flows. Most of the 
detailed studies of reattachment have been backward-facing steps (backsteps) which 
have the advantage of simple geometry and a single, well-defined separation point. 
Fences with a variety of geometries are also commonly used because of their practical 
importance and the ease with which they can be mounted on the wall of a wind- 
tunnel test section. 

We shall present the results of an experimental study of a turbulent boundary 
layer flowing in an adverse pressure gradient downstream of a wall fence. Extensive 
mean flow and turbulence measurements have been made from reattachment until 
the boundary layer begins to  merge with the opposite wall boundary layer far 
downstream. No detailed measurements have been made in the region of separated 
flow because of the difficulties in using hot wires in this region, although the 
reattachment length has been estimated. Sufficient information is available to aid 
development of, or to verify, methods for calculating boundary layers downstream 
of reattachment. 

We chose in our experiment to investigate the relaxation of a reattached boundary 
layer towards an equilibrium form. An equilibrium boundary layer is one in which 
boundary conditions and pressure gradient expressed in an appropriate non- 
dimensional form are held constant, and the boundary layer has developed until 
properly non-dimensionalized profiles of mean velocity become self-preserving. Self- 
preserving laminar boundary layers exist, but properly self-preserving turbulent 
boundary layers do not. However turbulent boundary layers that are self-preserving 
in the outer layer, apart from a small effect of Reynolds number, are possible and 
these we call equilibrium turbulent boundary layers. They have been investigated by 
many authors, including Clauser (1954, 1956), Townsend (1960, 1976), Bradshaw 
(1967) and East & Sawyer (1979). The test-section geometry in our experiment, and 
consequently the pressure gradient downstream of reattachment, was adjusted in a 
manner similar to that used by Clauser (1954) so that the Clauser mean velocity 
profile shape factor G fell to a predetermined value and then, downstream of this 
point, was maintained constant. 

2. Experimental method 
The low-turbulence closed-return wind tunnel described by Cutler (1984) was used 

for this experiment. The wind tunnel includes a heat exchanger to maintain the air 
temperature nearly constant and a secondary blower to make up air discharged 
through slots to the atmosphere a t  the test section. The test section is shown in figure 
1.  It consists of a parallel-walled (305 mm wide x 102 mm high) inlet duct followed 
by a diffuser and is preceded by a 6: 1 flow contraction. One wall of the test section, 
designated the test wall, is flat throughout and is the wall on which the boundary 
layer of interest flows. The test-wall boundary layer is tripped to produce transition 
to turbulence by a 0.79 mm high x 6.35 mm wide rectangular section trip located 
64 mm after the end of the contraction, and then it separates at a 7.37 mm high by 
6.35 mm wide rectangular-section wall-mounted fence located 187 mm from the exit 
of the contraction. In fact, the boundary layer separates just ahead of the fence, then 
reattaches and separates again a t  the leading corner of the fence, before reattaching 
on the test wall further downstream; the flow does not reattach to the fence 
downstream of the leading corner (Castro 1981). The boundary layer 99% thickness 
(as9) just ahead of the fence is 4.8+0.5mm (0.6%). Castro & Fackrell (1978), in an 
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FIQURE 1. Test section (flow is from left to right); ref is the reference station for C,, h is the 
fence height (7.37 mm), x is the streamwise coordinate, R is the reattachment point. 

experiment where the boundary-layer thickness ahead of a wall-mounted fence of 
small thickness was varied, showed that for 6,,/h < 0.6 there was no perceptible 
effect of this parameter on the flow downstream of the fence, and for 6,,/h as high as 
1.0 the effect was only a 5% reduction in reattachment length. 

The boundary layer reattaches in the inlet duct before entering the diffusing 
section, the diffusing section being located sufficiently far downstream of re- 
attachment that the separated-flow region and reattachment are not significantly 
effected by its presence. The reattachment length (xr ) ,  the distance from the 
downstream face of the fence to reattachment (the point of zero wall shear stress), is 
an important parameter which is commonly used in non-dimensionalizing the 
streamwise ( x )  coordinate. It was not measured directly in this experiment, but was 
estimated to be 115+5 mm by fitting the wall pressure distribution close to 
reattachment to data from a wide range of reattaching flows for which x,  was 
measured, including fence flows. The normalization first proposed by Roshko & Lau 
(but see Westphal & Johnston 1983, figure 6.2), which collapses the pressure 
distribution onto a universal curve within -0.6~~ and 0 . 2 ~ ~  of reattachment, was 
used in the fitting. 

The wall opposite the test wall in the diffusing section is flexible and its geometry 
may be adjusted to produce different adverse pressure gradients. Slots in this wall 
and the two endwalls provide a boundary-layer bleed ensuring that no separation 
occurs in the diffusing section. 

Spanwise profiles of the total pressure in the inlet-duct free stream show a peak- 
to-peak variation of less than 0.4% (0.2% in the velocity) and free stream (G)i/U 
levels are less than 0.2%. Spanwise profiles of the total pressure in the test-wall 
boundary layer, which were obtained in the inlet duct with the fence absent, also 
show good two-dimensionality, with peak-to-peak variation in local dynamic 
pressure less than 8 YO (4 % in velocity) in the central 90 'YO of the span. 

A momentum-integral balance was appled to the test-wall boundary layer (the 
P G P R  balance, see Coles & Hirst 1968) downstream of the wall fence to verify the 
two-dimensionality and the accuracy of the mean flow data. The maximum 
discrepancy between PL and PR in the range x = 122 mrn to z = 618 mm was no 
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more than 5 % of 0 measured a t  the first station (x = 122 mm), which indicates 
that  the flow is two-dimensional to within the expected uncertainty of PL and PR. 
Some caution should be used in interpreting the results far downstream since, a t  the 
last profile station (x = 618 mm), the test-wall boundary-layer thickness S,, has 
grown to nearly 70% of the diffuser height and nearly 30% of the diffuser width. 
However, the test-wall boundary layer does not begin to merge with the opposite 
wall boundary layer until downstream of this point since the opposite wall boundary 
layer is thin as a consequence of the boundary-layer bleed. The ratio of S,, to width 
of nearly 30 YO exceeds a little the limit specifed by de Brederode & Bradshaw (1978) 
of 25% for the effect of a sidewall boundary layer to be neglected. However, as a 
consequence of boundary-layer bleed and a lower growth rate, the slightly diverging 
sidewall boundary layers are thinner than the reattached test-wall boundary layer, 
so that the ratio of sidewall boundary-layer thickness to diffuser width is significantly 
less than de Brederode & Bradshaw's limit. 

Measurements of total pressure were made by using a Pitot probe with a tip 
constructed of 0.62 mm diameter, circular-section hypodermic needle ground square 
a t  the end. Mean velocity and turbulence statistics were obtained with hot-wire 
anemometers. A normal hot wire (DISA 55-P15) was used for measuring mean and 
fluctuating u, and an x -wire (DISA 55-P51) for mean and fluctuating u and v. The 
wires were DISA 5 micron platinum-plated tungsten wires, gold plated a t  the ends, 
and the hot-wire bridge was a TSI model 1050. Closely spaced static pressure taps 
gave the wall pressure distribution. Air temperature was monitored during data 
acquisition using an Omega (44034) thermistor. The data acquisition and experiment 
control was by a DEC MINC microcomputer and the x -wire data acquisition and 
much of the post-processing was by a DEC VAX 11-750. Traverses were with a 
computer-controlled, stepping-motor operated traversing mechanism and static 
pressure data acquisition was with a Scanivalve system. Hot wires were calibrated by 
fitting to a King's law, e2 = a+bUn, where a, b and n were optimized and angular 
calibration of x -wires was by yawing the probe as suggested by Bradshaw (1971). 
Linearization and processing to obtain turbulence statistics was performed digitally 
and in real time using the micro computer or the VAX. Small corrections were made 
to the hot-wire results for any small drift in temperature which did occur during a 
run. 

Small corrections were applied to the normal hot-wire data (subscript c) to account 
for the effects of high turbulence intensity and any small inclination of the mean flow 
streamlines with respect to the wall by using the following formula: 
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where 

- -  
U, = U(1 -el) ,  u: = u2(i-e2), 

2mv+uv2 
2crz ' u2u , 

e2 = 
P+2  

el = - e 

These formulae were derived following Bradshaw (1971) and the quantities in the 
terms el and e2 were all interpolated from x-wire measurements at the same 
streamwise location. Data were rejected a t  locations where flow reversals occurred 
more than 5% of the time - in practice normal wire data were rejected where 
(u")i/U > and x -wire data were rejected where (u2+w2);/U > 1/(22/2). Agree- 
ment between profiles of U and 2 measured with the normal wire (corrected) 
and the x -wire is well within the uncertainties quoted in table 1. The x-wire 
technique was validated in the fully developed turbulent channel flow described 

_ _  
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Probe type Quantity Uncertainty 

Static ta,p f?, - f0.01 

Normal hot wire - U f0.015U 

Crossed hot wire - U 0.015U 

UZ i- 0.042 

- UZ f 0.062 
V* f0 .15i  
rn + o . o m  

TABLE 1. Estimated uncertainty in directly measured quantities. All uncertainties are quoted 
at  20: 1 odds. 

by Hussain & Reynolds (1975) in which the shear stress can be derived from 
measurements of streamwise pressure gradient. 

The boundary-layer edge thickness, 6,,, was obtained as the point where the mean 
velocity, deduced from Pitot measurements of total pressure and the wall static 
pressure, reached 99% of the free-stream value. Mean velocity profiles from the 
normal hot wire were integrated to obtain the boundary-layer integral thicknesses. 
The definitions of East (1981), which account for any small effect of flow curvature, 
were used: 

s* = lorn (Up- U )  dy/Up,, 

Here, Up is the velocity calculated from the free-stream total pressure and the static 
pressure a t  the given y-location. It can easily be obtained a t  the wall (denoted Up,) 
where there are static pressure taps, and in the free stream it is simply the mean 
velocity. Since Up, and V,, the value of U, at Sgg, differ by no more than 1.5% in this 
experiment, i t  was considered acceptable to obtain Up at intermediate points using 
a simple interpolation scheme. The skin-friction coefficient, Cf = ~,(ipP~,), was 
estimated from normal hot-wire mean velocity profiles by fitting to the logarithmic 
law of the wall in the range 50 < y+ < 110, where u+ = U/u,  and y+ = yu,/v: 

u+ = (1/0.41)ln y++5.0. 

Skin friction was also estimated using the Ludweig-Tillman (L-T) correlation (see 
White 1974): 

Agreement in C, between these two methods is within f 5 YO. The results discussed 
below were obtained with the law-of-the-wall fit, and have an uncertainty of less than 
& 10%. 

Air temperature varied less than k0.2 "C for the acquisition of any given profile of 
data, and the temperatures for all data sets are within one or two degrees of each 
other. The kinematic viscosity was 15.50f0.05 x 1C6 m2/s. 

Parameters of the mean flow are given in table 2. The - full data set, includingmean 
velocities U and V ,  the Reynolds stresses, _ _  2, W, v2, the triple products u3, &, 
uv2, v3 and the fourth-order statistics u4, v4, is tabulated in Cutler (1984) where it is 
- -  
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x 
(mm) 

120 (122) 
158 (160) 
196 (198) 
234 (236) 
272 (274) 
310 (312) 
387 (389) 
463 (465) 

615 (617) 
539 (541) 

6,, 6* 6 
(mm) (mm) (mm) G 
26.2 9.43 4.41 - 
29.9 7.66 4.66 14.4 
34.9 7.76 5.16 10.9 
41.5 8.97 6.10 10.5 
49.1 9.93 6.76 10.7 
55.1 11.70 7.85 11.4 
64.5 14.00 9.37 11.6 
70.8 15.40 10.30 11.4 
77.2 16.60 11.20 11.2 
81.8 17.70 11.90 11.2 

Cf 
log law 

0.00149 
0.00189 
0.00186 
0.00178 
0.00166 
0.00163 
0.00167 
0.00168 
0.00170 

- 

Cf 
L-T 

0.00070 
0.00151 
0.00184 
0.00187 
0.00184 
0.00173 
0.00165 
0.00164 
0.00163 
0.00101 

v, UP, 
b / s )  (m/s) 
42.4 42.5 
41.1 40.8 
40.2 40.1 
38.6 38.7 
36.9 37.1 
35.2 35.7 
33.7 34.0 
32.9 33.0 
32.1 32.2 
31.5 31.6 

db\,/dX 
(l/s)  
- 38.4 
-8.3 
- 29.6 
-41.3 
- 38.8 
-31.1 
- 16.0 
- 11.0 
- 9.0 
- 8.3 

TABLE 2. Parameters of the mean flow. The number in brackets in the first column refers to 
the location of c$,, which has been obtained from Pitot data. 

designated Case ‘C ’. Detailed hot-wire measurements are only given downstream of 
reattachment, but the information is sufficient for developing and verifying computer 
methods for calculating reattached boundary layers. The following Section discusses 
in more detail the mean flow and turbulence results. 

3. Results 
The results for the skin-friction coefficient and the Clauser parameter (defined 

G = (H- l)/(HCt)/2), whereH = S* /O)  are given in table 2. The skin-friction coefficient 
initially rises rapidly before falling again more slowly, and the Clauser parameter 
initially falls rapidly before attaining a nearly constant value around 11.4. Figure 2 
shows the development of the wall static pressure coefficient, defined as 

c p  = (p-Pref)/(WCef) ; 

the reference pressure (pref) and reference velocity (& = 39.14 m/s) are measured at 
x = - 181 mm (marked ‘ref’ in figure 1). Also shown in figure 2 is the gradient of 
C,, obtained by locally fitting the C, data in a centred manner to a fourth- 
order polynomial, and differentiating. The pressure coefficient in the region from 
x = 50 mm to x = 100 mm (the region of separated flow) is large and negative and the 
pressure coefficient gradient is also very large - both are out of range in the figure. 
In the diffusing section the pressure gradient initially rises rapidly but then falls 
slowly as the pressure gradient needed to maintain constant G falls. 

The fact that G is maintained constant does not necessarily mean that the 
boundary layer is equilibrium. The boundary-layer edge velocity U, must also vary 
as a power law of the form U, = C ( X - X ~ ) ~ ,  where xo is an effective origin and C a 
constant (Townsend 1976). The exponent in this power law ranges from positive 
values which correspond to a favourable pressure gradient, to negative values as 
large as -0.25 or -0.30 (depending on Reynolds number) which correspond to an 
adverse pressure gradient. Development of lengthscales such as the boundary-layer 
thickness and the mixing length will then be linear and of the form 1 = Eo(z-zo). The 
boundary-layer thickness parameters SBB, IS*, and 8 in our experiment have been 
fitted to straight lines in the region x = 463-615 mm to give the location of the 
apparent origin, xo = -411 mm; both the fits and the data are shown in figure 3. The 
constant C and exponent a in the power law were then determined from a least- 
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0.4 r 

0 1cIo 200 300 400 500 600 700 - 0.2 

x (-) 

FIQURE 2. Development of the pressure coefficient C, (O), 100 times the gradient dC,/dx in mm-' 
(o), and C, and its gradient given by the power law UpW/V,,, = 2.818(~+411)-"~"(-). 

squares fit to  the C, data to  obtain the following expression (where x is measured 
in mm): 

This expression has been converted to  an expression for C, and one for dC,/dx which 
are compared to the experimental data in figure 2. These expressions are a good fit 
to the data downstream of x = 400 or 450 mm in the region where G is roughly 
constant, suggesting that the boundary layer is in equilibrium in this region. 
However, the exponent (-0.27) is larger in magnitude than -0.22, the value 
interpolated from the results of previous studies of equilibrium turbulent boundary 
layers for G = 11.4 (Bradshaw 1967). 

A practically equivalent definition of an equilibrium turbulent boundary layer 
requires that, instead of a power-law variation of U,, the Clauser pressure gradient 
parameter, /3 = 6*/~,dp/dx, is maintained constant (Clauser 1954). In figure 4 we 
have plotted G as a function of B and some results from the literature for equilibrium 
turbulent boundary layers. At the three downstream stations, from x =  463 to 
615 mm, /3 takes a nearly constant value roughly twice that suggested by the curve 
fit of Nash (1965). Thus in terms of all mean flow parameters a state of equilibrium 
would appear to have been achieved by z = 400 or 450 mm, but the values of a and 
/3 do not correspond to those expected on the basis of previous studies for G = 11.4. 

In  order to  show the development of the total pressure along mean streamlines we 
have plotted in figure 5 the defect of total pressure coefficient, ( P e - P ) / ( $ p q e f ) ,  as a 
function of the stream function, 

u,/U,,, = 2.818(~+411)-~~~'.  

1 ~ .  = rLI/u,,dY. 0 

The total pressure is seen to  rise close to  the wall and fall farther out in a smooth and 
monotonic fashion, with the rate of change near the wall comparable with that 
farther out. This is in contrast to typical zero-pressure-gradient boundary layers 
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FIGURE 3. Development of the boundary-layer thickness parameters, So, (A), 8*, (O) ,  and 0 (0). 
Also, linear developments with the origin at z = -411 mm. 

FIGURE 4. Development of the Clauser shape parameter as a function, of the pressure gradient 
parameter ,? (0) ;  Nash (1965) fit to equilibrium data, G = 6.1(,?+1.81)$-1.7 (-); equilibrium 
data due to Clauser (1964) (m); Bradshaw (1967) (0); and East & Sawyer (1979) (A). 

where the flow near the wall tends to respond much more quickly to imposed changes 
in boundary conditions such as surface roughness and pressure gradient (Smits & 
Wood 1985). 

Several profiles of the mean U-component velocity measured with normal hot 
wires are plotted in wall coordinates (u, is obtained by fitting to the logarithmic law) 
in figure 6. All profiles have extensive logarithmic regions and the profiles can be 
fitted by the law of the wall and the wake (Coles in Coles & Hirst 1968). Profiles of the 
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FIQURE 5. Profiles of the defect of total pressure coefficient, as a function of the stream function. 
The profiles are at z = 122 mm (o), 198 mm (a), 312 mm (V), 465 mm (+), and 617 mm ( x ) .  
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FIQURE 6. Profiles of mean U-component velocity in wall coordinates at x = 196 mm (o), 310 
(V), 463 mm (+), and 615 mm ( x ) .  For comparison u+ = (l/0.41)ln(yf)+5.0 (-). 

mm 
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FIQURE 7. Profiles of mean V-component velocity. The profiles are at x = 122 mm (Q), 
199 mm (m), 313 mm (V), 465 mm (+), and 618 mm ( x ). 

V-component velocity obtained with the x -wire are plotted in figure 7 and show that 
near reattachment there is a region with significant mean streamline concave 
curvature within the boundary layer, but that farther downstream the streamlines 
are nearly straight. In  the region of concave curvature, 6,,/R is roughly 0.04 (R is the 
radius of curvature of the mean flow streamlines at the edge of the boundary layer). 
Barlow & Johnston (1985) show that noticeable structural changes take more than 
10' and 20° of turning to develop in a boundary layer on a concavely curved surface 
with 6,,/R = 0.06-0.08, and since no more than about 7" of turning occurs in our 
experiment it is unlikely that significant structural changes occur as a result. 

The Reynolds stresses, shown in figure 8, peak near the centre of the boundary 
layer, a feature of both the free shear layer ahead of reattachment and of typical 
adverse-pressure-gradient boundary layers. The peak Reynolds stresses fall mono- 
tonically in the downstream direction but the - - - -  shapes of the profiles change little. 
For the sake of brevity the triple products (u3, u2w, uv2, w3) are not shown here, but 
these behave in a similar manner to the Reynolds stresses, with high levels near 
reattachment which fall monotonically in the downstream direction. 

4. Derived results and modelling 
If mean streamline angles with respect to the wall are large in a boundary layer 

and the streamlines are nearly straight, then it may be appropriate to model the 
turbulent stresses in a streamline coordinate system in which z, is tangential to the 
mean streamline direction at each point in the flow, z, = z (unchanged) and y, is 
normal to z, and z,, rather than in the wall system in which the data is measured. The 
shear stress in the streamline coordinate system may be obtained by using the 
following expression : - -  

--- = -WUCOS (2a)++(u2-w2)sin @a), 

where tan (a) = V / U .  In separating turbulent boundary layers, where typically 
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FIQURE 8. (a)  Profiles of turbulent sheaf stress, --.ri?j/q. WaJ points are gf from a fit of mean 
velocity to the log law. ( b )  Profiles of ua/U:. (c) Profiles of v 2 / e .  For the profile locations, see 
figure 7. 

a = 5O-15" and -m and -u,v, can differ by more than 50%, some of the conven- 
tional models for -m, such as the structural parameter (al = - T E D / ( U ~ + V ~ +  w2), 
more accurately represent the data when -- is used instead (see Cutler 1984; 
Simpson 1985). In the present experiment the flow in the boundary layer is parallel 
to the wall to within +5" so that the peak -- is 14% lower than the peak -m 

_ _ _  
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FIGURE 9. Profiles of the structural parameter a,. For the profile locations, see figure 7. 

at  x = 122 mm, 6% lower a t  x = 160 mm and is not significantly different farther 
downstream. In comparing our data with model profiles for L,  a,, I ,  and vt, we have 
chosen to use streamline coordinates. 

Since 3 was not measured - _  in the experiment, we have followed the usual practice 
- of assuming that w" = $(u2+v2) in calculating the turbulent kinetic energy (a" = 
u2+++G). Shiloh, Shivaprasad & Simpson (1981) indicated that 2 = 3 might be 
a better approximation in an adverse-pressure-gradient boundary layer near separa- 
tion. If this assumption had been made then would have been roughly 10% 
lower near the middle of the layer and roughly 20% -- lower near the wall. However, 
w2 = v 2  is a poor assumption near the wall where v2/w2 tends to zero, so that a" is 
probably less than 10Y0 too high. Profiles - -  of the structural parameter, shown in 
figure 9, have been calculated using 2 = a ( ~ '  + v2). The peak in a,  falls to as low as 
0.11, 25% below the generally accepted equilibrium value of 0.15, and rises only to  
about 0.12 a t  the most downstream station. The low values of a,  may in part be 
attributable to the assumption made for 3. 

- -  

Profiles of the eddy viscosity, au 

are shown in figure 10. To be consistent, we should have used streamline coordinates 
in evaluating the mean velocity gradient but in the present case this makes 
practically no difference. Also shown in this figure is an outer-layer model due to  
Cebeci and Smith (see Cebeci & Bradshaw 1977), which is a fit to data from 
equilibrium turbulent boundary layers. The peak in the date profiles rises from about 
0.03 close to  reattachment to as high as 0.06 a t  x = 199 mm, before falling again to 
about 0.038 a t  x = 465 mm. This is still more than twice what the model predicts and 
the profiles at the last two stations indicate only a very slow approach to the model 
profile. Profiles of the mixing length, 

0 

P 
+ 

.p" V 0 

are shown in figure 11. Also shown is the usual model for the wall region (I = 0.41~)  
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FIGURE 10. Profiles of the eddy viscosity and an equilibrium model due to Cebeci and Smith (-). 
For the profile locations, see figure 7. 
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FIGURE 11. Profiles of the mixing length and an equilibrium model (-). For the 
profile locations, see figure 7. 

and the standard outer-layer value (0.085). The behaviour of the mixing length is, 
not surprisingly, quite similar to the behaviour of the eddy viscosity so that the 
normalized mixing length near the centre of the layer rises rapidly after reattachment 
to a peak of about 0.16 at x = 199 mm before falling slowly to about 0.12 a t  x = 618 
mm. I n  the wall region the data fall above I = 0.41y, but Galbraith & Head (1975) 
have demonstrated that this function (which works well in a zero pressure gradient) 
is not a good model in adverse-pressure-gradient boundary layers. It is likely that 
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any predictive method that assumes a unique relationship between mean velocity 
gradient and Reynolds shear stress in the outer layer will fail in this flow. 

Although terms in the full momentum equations have not been derived from the 
data, terms in the integral momentum equation have been derived as part of the 
PLPR check (see $2 and Cutler 1984). The contribution of the Reynolds normal- 
stress term is not negligible in comparison to other terms up to about x = 400 or 
450mm so that the Reynolds normal-stress terms should not be neglected in 
calculating flows close to reattachment. 

The turbulent kinetic energy equation may be written for two-dimensional flows 
as follows: 

Convection Diffusion Production 

All the terms in this equation, except the fluctuating pressure contribution to the 
diffusion and the dissipation, have been evaluated directly using the measured 
profiles of mean - -  velocity, Reynolds stresses and triple products. As before we assume 
that G A ( u 2  + _ _  v2) ,  and a similar - assumption - -  is made in estimating the triple product 
terms : uw2 = +(u3 + uv2) and vw2 = +(wu2 + v'). Direct numerical simulations and large- 
eddy simulations, for example the direct numerical simulation of a low-Reynolds- 
number turbulent channel flow by Moser & Moin (1984), suggest that  the pressure 
diffusion term is small in comparison with the dissipation term (except possibly at  
reattachment). Profiles of dissipation were obtained by difference of the other terms 
in the turbulent kinetic energy equation (neglecting the pressure diffusion). The 
uncertainty in the dissipation evaluated in this way is inevitably very high, perhaps 
of the order of k 30 %. 

The convection, diffusion, production and dissipation terms at x = 160 and 
541 mm (non-dimensionalised with See and U,) are shown in figure 12. The terms are 
all larger in magnitude a t  the upstream station, where the turbulence levels are 
generally higher, than at the downstream station. The peak normal-stress production 
term ( ( 2 - 3 ) a U l a x )  is 22% of the peak production a t  x = 160 mm and 10% at  
x = 541 mm, and the peak x-diffusion term ( a ( g ) / a x )  is 33 YO of the peak diffusion at 
x = 160 mm and 21 O/O at x = 541 mm. These terms are often neglected in boundary- 
layer calculation methods based on the turbulent kinetic energy equation, but they 
should be included for accurate calculation of flows near reattachment. Bradshaw 
(1967) presents an energy balance for an a = -0.255, G = 14.5 equilibrium adversc- 
pressure-gradient boundary layer for which the profile of the production term is 
similar in shape and magnitude to the production profile a t  x = 541 mm. Although 
the profiles of the other terms are also roughly similar in shape, the dissipation term 
in the present experiment is roughly twice that in Bradshaw's, the diffusion term is 
roughly the same, and the convection term is five or ten times larger. The relatively 
large magnitude of the convection term in the present flow is noteworthy. 

The dissipation results are more easily interpreted by presenting them in the form 
of a lengthscale (figure 13) : 

L = ( -?qT$/e. 

Our results are compared with the model of Bradshaw, Ferriss and Atwell (1967), 
which has been derived from zero and adverse-pressure-gradient equilibrium 
turbulent layer data and is similar to the models used for the mixing length. Indeed 
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FIGURE 12. Profiles of terms in the turbulent kinetic energy equation at (a) z = 160 mm, 
( b )  541 mm; convection (o), production (A), diffusion (0) and dissipation (0). 

the mixing length and dissipation length are equal where the production of turbulent 
kinetic energy and the dissipation are equal, which is the case in the wall region of 
zero-pressure-gradient boundary layers and is often approximately the case in the 
outer layer. Our results show that the peak dissipation length at the upstream 
station is nearly three times larger than equilibrium - too great a difference to be 
accounted €or by the large uncertainty in dissipation - but falls downstream ao that 
by 5 = 313 mm it is close to equilibrium. The results do indicate a linear region close 
to the wall, but a little below the L = 0 . 4 1 ~  distribution implied by the model (a 

13-2 
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FIGURE 13. Profiles of the dissipation length and an equilibrium model due to  Bradshaw et at. 
(1967) (-). The profiles are at 2 = 160 mm (O), 237 mm (O), 313 mm (A), 389 mm (m) and 
541 mm (A). 

FIGURE 14. Comparison of the development of G for the present case (0) with the development for 
reattached boundary layers in zero pressure gradient; the Tillman 'ledge' flow (Coles & Hirst 1968) 
(0);  and a backstep flow (Bradshaw & Wong 1972) (a). 

discrepancy possibly attributable to experimental uncertainty). Another, more 
recent, model for the dissipation length in a boundary layer, which apples to a wide 
range of turbulent, wall-bounded shear flows, is described by Hunt, Spalart & 
Mansour (1987) ; it may be written in the following form : 

where A, = 0.27 and A, = 0.46. The dissipation length has been evaluated from our 
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measurements using this model and compared to the directly evaluated dissipation 
length and Bradshaw’s model. The agreement is excellent a t  the downstream station 
(x = 541 mm) but, although the model does predict a rise in dissipation length scale 
after reattachment (to a peak of about L/S,, = 0.17 a t  x = 160 mm), the rise is 
underpredicted. Hunt’s model agrees well with the L = 0 . 4 1 ~  distribution in the wall 
region. 

5. Discussion 
The results seem to indicate two distinct regions of development. (i) An upstream 

region, from reattachment to x = 400 or 450 mm (54h or 61h), in which the flow 
changes rapidly as it adjusts to  the new boundary condition. In this region the 
Clauser parameter G falls rapidly and the eddy viscosity first rises rapidly to four 
times normal values then falls more slowly. (ii) A region downstream of this in which 
G and /3 are both nearly constant and profiles of eddy viscosity are nearly self-similar. 
In  this region the boundary layer would appear to be near to equilibrium, except that 
the eddy-viscosity coefficient is twice as large as is expected, and G is significantly 
lower (given /3) on the basis of previous studies of equilibrium boundary layers. 
Unlike eddy viscosity and mixing length (which relate the shear stress to the velocity 
gradient), those parameters which relate turbulence quantities to one another (i.e. 
a, and L )  have distributions fairly close to equilibrium in the downstream region. 

A comparison with the development of G for the present case with the development 
in the zero-pressure-gradient flows downstream of a square-section fence (see the 
Tillman ‘ledge’ flow in Coles & Hirst 1968) and downstream of a backward-facing 
step (Bradshaw & Wong 1972) is shown in figure 14. All three flows have a region in 
which G falls rapidly, undershooting the equilibrium value calculated using the 
correlation of Nash (1965), followed by a region in which it is nearly constant or (in 
the zero-pressure-gradient cases) in which it appears to rise slowly towards 
equilibrium. In  no case does G reach normal equilibrium values by the last 
measurement station, and the slow rate of change in the streamwise distance suggests 
that it will not do so for a considerable distance (several hundred fence heights for 
the fence flows). 

Although there are qualitative similarities in the development of G for the flows 
shown in figure 14, there are large differences in the z-distance to the point of 
minimum G, and the minimum value of G itself. However these may be explained by 
the differences in the geometries upstream of reattachment and differences in the 
pressure gradient. The fence geometry and Re, for the present case and the Tillman 
flow are similar, but Bradshaw & Wong (1972) have shown that the much larger 
upstream boundary-layer thickness (as9 = 3.3h) in the Tillman case results in the 
larger distance (in terms of step heights) from reattachment to the point of minimum 
G. The differences between fence flows and backstep flows are much greater : (i) fence 
flows typically have a much longer reattachment length than backstep flows, which 
may be attributed to the initial deflection of the mean streamlines away from the 
wall by the fence (the reattachment lengths are x, = 13.5h for Tillman’s ledge flow, 
x, = 15.6i-O.7h for the present fence flow, and x, = 6h for Bradshaw’s flow); (ii) the 
Reynolds stresses in the free shear layer and at reattachment are typically up to 
twice those in backstep flows, probably as a result of higher reversed-flow velocities 
and so greater velocity differences across the shear layer. As a result, the fence flows 
require a greater distance (in terms of step heights) to reach the minimum G point 
and, farther downstream, to reach equilibrium. 
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A comparison with the more detailed investigations of reattachment downstream 
of a backward-facing step and the relaxation in a parallel duct by Kim, Kline and 
Johnston (1980) (x, = 7 +  lh ) ,  and by Driver & Seegmiller (1985) (2, = +6 . lh )  have 
revealed further similarities to the present flow in the upstream region. Kim et al. 
observed a rapid rise in mixing length and eddy viscosity (non-dimensionalized in 
the normal manner) downstream of reattachment. Peak values of eddy viscosity 
(vt/(U,6*)) as high as 0.085 and outer-layer values of mixing length (Z/&@) as high 
as 0.2 were observed a t  x = 15.7h, higher even than in the present flow. Driver & 
Seegmiller obtained profiles of terms of the turbulent kinetic energy equation 
using similar assumptions for the terms containing w and the pressure diffusion to the 
ones we have made. These results indicate dissipation lengths (L/6,,) of about 0.1 at 
x = 8h and 0.2 at x = 12h, which are above the equilibrium levels proposed by 
Bradshaw et al. (1967), although possibly not significantly so given the high 
uncertainty in the dissipation measurement. These more detailed investigations do 
not go far enough downstream to observe the region seen in the present flow 
(discussed above), where G and profiles of eddy viscosity coefficient change 

The present results are consistent with the three-layer structure of reattached 
boundary layers proposed by Bradshaw & Wong (1972), which consists of (i) ‘a local- 
equilibrium layer, following the logarithmic law, which spreads out from the wall ’; 
(ii) ‘a layer in which.. . the dissipation length parameter, increases above the local 
equilibrium value with increasing y’ (see figure 13); and (iii) ‘an outer layer which, 
except for the effects of rapid distortion near reattachment, will retain the 
characteristics of the mixing layer until the effects of the altered boundary condition 
at the surface propagate through it’. In Bradshaw’s experiment and most other 
reattached-boundary-layer studies (in zero pressure gradient) the junction of layers 
(i) and (ii) is visible as a marked dip in the mean velocity profiles below the 
logarithmic law. However, the absence of such a dip in our experiment can be 
explained by consideration of the relative magnitude of the terms in the turbulent 
kinetic energy equation : 

aU ( - m): convection + diffusion 

In most zero-pressure-gradient boundary layers, convection and diffusion may be 
neglected close to the wall and the turbulent shear stress is approximately constant 
(except in the laminar sublayer). If we assume also that L = 0 . 4 1 ~  the above 
equation may be integrated to give the logarithmic law and any increase in L above 
0 . 4 1 ~  will cause the mean velocity to dip below the logarithmic law. However, where 
the pressure gradient is adverse the convection and diffusion terms are comparable 
in size with the production term near the wall and of the same sign (negative). Also, 
the shear stress is no longer constant with respect to y but is rising. The result is that, 
although our data indicate a rise in L above 0.41y, the behaviour of the dissipation 
term is less important in determining the mean velocity profile and there is no dip 
below the logarithmic law. 

The great sensitivity of the boundary-layer structure to the perturbation, even far 
downstream, is interesting and is in general agreement with the results of previous 
studies. The effects of body forces or extra rates of strain (equivalently, the effect of 
extra production terms on the Reynolds stress transport equations) are known to be 
surprisingly large (Bradshaw 1975). For example, the effects of streamwise curvature, 
lateral divergence, bulk dilatation, and buoyancy forces are as much as an order of 

slowly. 

.. -m + _ -  - 
aY L 
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magnitude greater than expected from the size of the explicitly extra generation 
terms. Thus, local-equilibrium (eddy viscosity or mixing length) types of model 
generally prove inaccurate. Whilst the extra (aU/ax) production terms in equilibrium 
adverse-pressure-gradient boundary layers are not normally large enough to have a 
significant effect, the unusual magnitude of some of the terms in the transport 
equations for the reattached layer apparently are. Hunt, Stretch & Britter (1988) 
have attributed the high sensitivity of turbulent boundary layers to buoyancy effects 
to a dependence of the dissipation lengthscale on the shear (aU/ay). If the turbulent 
kinetic energy equation is cast in the form 

- aU 

aY 
-u,--P, = 6, 

were P, are the extra production terms, and the convection and diffusion terms, then 
using Hunt’s equation for the dissipation length we obtain the following expression 
for the mixing length: 

where 1, is the distribution when P, is small. However, if Bradshaw’s model, which 
is of the form L/6,, = F(y/S,,), is used then the expression is 

The term that multiples P, is a t  least four times greater in a typical boundary layer 
if Hunt’s model is used, indeed suggesting a much higher than expected sensitivity 
of turbulent boundary layers to perturbation in general. 

6. Conclusions 
The relaxation of a reattached turbulent boundary layer downstream of a wall 

fence has been investigated. The boundary layer has an adverse pressure gradient 
imposed upon it which is adjusted in an attempt to bring the boundary layer into 
equilibrium. This is done by adjusting the pressure gradient so as to  bring the Clauser 
parameter (G) to a value of about 11.4 and then maintain it roughly constant. 
Detailed measurements with hot-wire anemometers in the region from reattachment 
to x = 83h are presented. 

(i) Two regions of the flow have been identified. I n  the upstream region (from 
reattachment to  x = 54h or 61h) G falls rapidly to  about 11.4 and the eddy viscosity 
and mixing length profiles (non-dimensionalized in the conventional way) rise 
rapidly and then fall again more slowly. In  the downstream region, G and the 
pressure gradient parameter (p )  are roughly constant (as one would expect if the 
boundary layer were equilibrium), and profiles of the mixing length and eddy 
viscosity coefficient are roughly self-similar. However both /3 and eddy viscosity are 
about twice as large as expected on the basis of previous studies of equilibrium 
boundary layers (given G). 

(ii) Qualitatively similar results are observed in zero-pressure-gradient boundary 
layers downstream of reattachment, although there is no single, detailed, experiment 
that  goes sufficiently far downstream to make quantitative comparisons. The layered 
structure observed in profiles of mean velocity in a zero pressure gradient is absent 
in the present case because, in part, of the greater convection a.nd diffusion of 
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turbulent kinetic energy from near the middle of the boundary layer towards the wall 
(relative to the local production) in adverse-pressure-gradient boundary layers. 

(iii) It is not clear from the results of this experiment (or from the literature) 
whether, if we had made measurements sufficiently far downstream, we would have 
seen the development of a ‘normal ’, equilibrium, adverse-pressure-gradient 
boundary layer. It is clear however that such a layer will only be reached after 
several hundred step heights of streamwise development. 

(iv) Within the upstream region mentioned above many of the terms usually 
neglected in simplifying the momentum and turbulent kinetic energy equations for 
boundary-layer calculations should not be neglected. Specifically, the a(? - ?)/ax 
term in the x-component momentum equation, and the (?-?)aU/ax and a(g) /as 
terms in the turbulent kinetic energy equation are not small. The use of a streamline 
coordinate system in this region may be of some use in the modelling of quantities 
containing the turbulent shear stress. 
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support from the Dept of Mechanical Engineering, the Office of the Dean of Graduate 
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